If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x^2-5x)+(9x-12)=180
We move all terms to the left:
(x^2-5x)+(9x-12)-(180)=0
We get rid of parentheses
x^2-5x+9x-12-180=0
We add all the numbers together, and all the variables
x^2+4x-192=0
a = 1; b = 4; c = -192;
Δ = b2-4ac
Δ = 42-4·1·(-192)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-28}{2*1}=\frac{-32}{2} =-16 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+28}{2*1}=\frac{24}{2} =12 $
| -2p+6(7+7p)=2 | | -6r=-7−7r | | -9+6x=-(6x-3) | | 5x-3=33+3x | | -60=5(n-6) | | 3.00=0.55v | | 6x-3+1/2=-35/2 | | 1/2(8x+10)=4x+5 | | 3=0.55v | | 11-4x=7+5x | | 9p=10p+8 | | 42/5+k=-3.2/11 | | 1/3(3w-15)=-1/5(25-5w | | 64=10+20*h | | 9x-2(3x+5)=10x-7(x+2) | | 5(x+5)=8x-3x+20 | | 7m=8m-10 | | 60+40n=180 | | (4x+12)-(9x-18)=-17 | | 2(x-3)+3x=3(2x-4) | | (4x-12)-(9x+18)=-17 | | X+41=173+x | | -3/5t=-5/16 | | h(9)=1600-16(9)^2 | | 5w+3=19+3w | | -23+5x=8(x-1) | | 5/(w-7)=6 | | 5/w-7=6 | | 4x-7/3=-5 | | 4x+10=-6x | | w(w-5)-w-22+(w+5)(w-5)=w | | x+5+3x+9+2x-2=180 |